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Abstract. Three studies sought to investigate decision strategies in memory-based decisions and to test the predictions of the parallel constraint
satisfaction (PCS) model for decision making (Glöckner & Betsch, 2008). Time pressure was manipulated and the model was compared against
simple heuristics (take the best and equal weight) and a weighted additive strategy. From PCS we predicted that fast intuitive decision making is
based on compensatory information integration and that decision time increases and confidence decreases with increasing inconsistency in the
decision task. In line with these predictions we observed a predominant usage of compensatory strategies under all time-pressure conditions and
even with decision times as short as 1.7 s. For a substantial number of participants, choices and decision times were best explained by PCS, but
there was also evidence for use of simple heuristics. The time-pressure manipulation did not significantly affect decision strategies. Overall, the
results highlight intuitive, automatic processes in decision making and support the idea that human information-processing capabilities are less
severely bounded than often assumed.
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Decision making entails integrating probabilistic informa-
tion. Empirical evidence indicates that individuals employ
multiple different strategies to accomplish this (Payne,
Bettman, & Johnson, 1988). Some of these strategies are
more effortful such as the weighted additive rule (WADD)
of utility theory. Others, such as the lexicographic rule
(LEX, Fishburn, 1974), elimination-by-aspects (Tversky,
1972), or the equal weight rule (EQW, Fishburn, 1974),
involve considerably fewer computational steps. Consider-
ing deliberate processes only, it is reasonable to assume that
the mental effort for a decision strategy can be approximated
by the number of computational steps to apply the strategy
(Payne, et al., 1988). Therefore, the application of a WADD
strategy should be much more effortful and time consuming
than the application of, for instance, a LEX or an EQW heu-
ristic and it has been shown that people are aware of this fact
(Chu & Spires, 2003).

Interestingly, recent studies in neuroscience indicate that
‘‘rational’’ principles like weighted sums might be naturally
computed by certain brain regions (e.g., Glimcher, Dorris, &
Bayer, 2005; Platt & Glimcher, 1999). In a similar vein,
findings in probabilistic inference decisions (Glöckner &
Betsch, 2008c) and preference decisions under risk (Glöck-
ner & Betsch, 2008a) indicate that individuals are able to
apply WADD strategies very quickly. Decision times are
far below the times that would be necessary for a sequence
of deliberate calculations. These findings indicate that indi-
viduals might apply intuitive-automatic decision strategies
that partially rely on automatic processes (e.g., Kahneman
& Frederick, 2002) and approximate weighted additive
information integration without a deliberate calculation of
weighted sums (Hammond, Hamm, Grassia, & Pearson,

1987). Glöckner and Betsch (2008b) have argued that the
underlying cognitive processes can be modeled using paral-
lel constraint satisfaction (PCS) networks (Holyoak &
Simon, 1999; McClelland & Rumelhart, 1981).

In the current paper, we investigate specific predictions of
the PCS model (Glöckner & Betsch, 2008b) in memory-
based probabilistic inference decisions concerning choices,
decision times, and confidence ratings. First, studies of mem-
ory-based decisions are reviewed and critically evaluated.
Then, the PCS model is briefly introduced and hypotheses
are derived. Three studies are reported in which we test these
hypotheses against hypotheses derived from the take-the-best
(TTB) heuristic (Gigerenzer & Goldstein, 1996), the EQW
heuristic, and a WADD strategy. This is the first study to
investigate how well the automatic-intuitive PCS model
can account for choices, decision times, and confidence in
memory-based probabilistic inferences compared to classic
heuristics. We also investigate the influence of time pressure
on strategy selection in memory-based decisions. Small
effects of increased time pressure would add further support
for the automatic-processing assumption underlying PCS. As
a third issue, we aim to explore whether the previously found
(and often cited) predominant application of TTB inmemory-
based decisions holds in the classic city-size task.

Research on Memory-Based
Probabilistic Inference Decisions

Much research on probabilistic inference decisions has been
conducted using the city-size task (Gigerenzer & Goldstein,

Experimental Psychology 2011; Vol. 58(3):180–195
DOI: 10.1027/1618-3169/a000084

� 2010 Hogrefe Publishing



1996). In this task individuals have to decide which of two
cities has more inhabitants. Assuming they do not already
know the exact number of inhabitants, people might use
information about the cities that have a certain predictive
power for estimating the size of the cities (cues). Individuals
could try to remember, for instance, if one of the cities is a
state capital, given that state capitals are on average larger
than noncapitals.

To solve probabilistic inference tasks, individuals may
have to consider probabilistic information from multiple
cues. Research has focused mainly on cues with dichoto-
mous cue values (i.e., yes/no). Individuals might take into
account cue validities, that is, the estimated predictive power
of the cues (sometimes defined as the conditional likelihood
of a positive criterion value given a positive cue value; e.g.,
Gigerenzer & Goldstein, 1996). According to a TTB heuris-
tic (a special case of LEX), individuals only retrieve infor-
mation on the most valid cue and select the option that
scores higher on this cue. The second cue is retrieved only
if the first cue does not differentiate between options, and so
on for the third cue, etc. The EQW heuristic assumes that
people only add up positive and negative cue values of both
options and choose the option with the higher sum. The
deliberate WADD strategy assumes that individuals calcu-
late the weighted sum of cue values and cue validities for
each option and select the option with the higher weighted
sum.

If the information about the city (cue value) is directly
presented to the person, for instance on a computer
screen, this would be considered an inference from the gi-
vens (Bröder & Schiffer, 2003b; Gigerenzer & Goldstein,
1996). In contrast, if cue values have to be retrieved from
memory this is referred to as inferences from memory. In
contrast to a large body of evidence on decisions from
given information (e.g., Bergert & Nosofsky, 2007;
Bröder, 2000, 2003; Bröder & Schiffer, 2003b; Glöckner
& Betsch, 2008c; Newell, Weston, & Shanks, 2003), only
a few studies have been conducted to investigate strate-
gies of memory-based probabilistic inference decisions.
In one of the first investigations of memory-based deci-
sions, Bröder and Schiffer (2003b) developed a research
paradigm in which participants learned information about
target people. Participants used this information later on to
decide which of these targets committed a certain crime.
The experiments revealed that the majority of participants
used simple heuristics, particularly TTB. A significant
shift in decision strategies was observed between mem-
ory-based decisions and decisions from given information.
In memory-based decisions a higher proportion of TTB
users and a lower proportion of WADD users were
observed. Furthermore, the representation format of the
cues had an influence on decision strategies. In the
‘‘learning phase,’’ attributes of the target people (e.g., type
of jacket and shirt color) were presented either verbally or
in the form of a picture of the person which showed the
various attributes. The latter was meant to induce an
image-based representation format and led to a higher per-
centage of WADD users, something that Bröder and
Schiffer explained by incorporating automatic processes

as suggested in image theory (Beach & Mitchell, 1996)
which might result in weighted compensatory information
integration.

Bröder and Gaissmaier (2007) further investigated deci-
sion strategies in memory-based decisions by conducting a
reanalysis of five earlier studies (Bröder & Schiffer,
2003b, 2006), plus one new experiment, all of which used
essentially the same procedure as the studies reported above.
The reanalysis revealed that the majority of participants used
simple heuristics instead of more effortful weighted com-
pensatory strategies (198 TTB users, 83 EQW users, 90
WADD users, and 44 participants who appeared to guess
randomly). Furthermore, decision times indicated that for
TTB users, decision times increased with the number of
cues needed to differentiate between the options when using
this strategy. This provided converging evidence for the
strategy classification. It was further interpreted as support
for the general claim that information is serially processed
and that the number of necessary calculations determines
decision time (cf. Payne et al., 1988).

For several reasons we suspect that these results might
not generalize to other settings. The criminal case materials
used in these studies incorporated several specific features
that might crucially influence the results. First, the cues used
were not intended to have any natural predictive power (cue
validity) for the decision criterion (guilty vs. not guilty) and
they were conceptually not binary cues (a cue such as shirt
color could have numerous possible values, whereas
whether a city is a state capital or not is a yes/no question).
Individuals were explicitly informed about cue validities,
but only after they had learned the cue values. Individuals
learned, for instance, that Anne wore a white shirt and were
then later informed that four eyewitnesses had seen the per-
petrator wearing a white shirt. Therefore, the decision task
was rather demanding: Individuals first had to remember
the cue validities and then had to retrieve the cue values they
had learned earlier. In contrast, in other settings, like the
city-size decisions, cues have a priori cue validities which
are readily meaningful and they are often binary. This might
facilitate the application of automatic processing. Hence
there is evidence demonstrating the use of TTB as a com-
mon strategy in memory-based decisions, but perhaps only
under specific circumstances in which retrieval is particu-
larly effortful.

The PCS Model for Decision Making

In contrast to the previously mentioned deliberate strate-
gies, PCS models assume that persons do not use step-
wise calculations in reaching a decision. Instead,
automatic processes akin to perception are activated that
operate toward identifying the preferred interpretation con-
sidering the overall constellation of information. This
interpretation is highlighted and people construct best
interpretations given the evidence. For instance, in legal
or moral judgments people might construct the preferred
solution to a highly complex task involuntarily and within
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the blink of an eye. Glöckner and Betsch (2008b) have
suggested to model the cognitive processes by PCS net-
works (for earlier PCS approaches to judgment and deci-
sion making, see Holyoak & Simon, 1999; Thagard,
1989). The suggested PCS model consists of three (or
possibly four) steps: When individuals encounter a deci-
sion situation, they first activate associated and salient
information in memory and form a mental representation
that incorporates any given information, plus information
stored in memory. In the second step, automatic processes
of PCS take place that lead to the maximization of con-
sistency in the representation. Consistency in this context
means that pieces of information do not contradict each
other. Consistency in a decision situation can mainly be
reached by dominance structuring (cf. Montgomery,
1989), which occurs by modifying information so that
one option clearly dominates the other(s). By spreading
activation, inconsistency between pieces of information
is reduced and a consistent (or balanced) mental represen-
tation is formed. In the third step, the decider consults the
resulting mental representation in which one option usu-
ally clearly dominates chooses this option. If the consis-
tency of the resulting mental representation is below a
certain threshold, deliberate construction processes are
activated, constituting a fourth step. Deliberate construc-
tions are used to change the structure of the network.
However, for pragmatic reasons, the simulation reported
below only considers the first three steps.

In the following section, we present results from simula-
tions of the model that were calculated to derive specific
decision time and confidence predictions for the later
reported empirical tests.

Simulations

The Model and the Updating Algorithm

For the simulation the network structure presented in
Figure 1 and an iterative activation updating mechanism
(PCS algorithm; McClelland & Rumelhart, 1981) were used
(Glöckner & Betsch, 2008b). Boxes represent nodes with
variable activations. Lines represent (fixed) links between
nodes and are all bidirectional. Connection weights can
range from �1 to +1 and are labeled w. Connections
between options and cues represent cue information, indicat-
ing a positive or negative predictive weight of the cue for the
respective option. Links between the general validity node
and the cues represent a priori cue validities that might result
from learning. The general validity node is used to activate
the network but has no specific psychological meaning.
Using the iterative updating algorithm, consistency (also
referred to as coherence) is produced in the network by
changing activations (a) of the nodes.1

The iterative updating algorithm uses a sigmoid activa-
tion function proposed by McClelland and Rumelhart
(1981):

ai t þ 1ð Þ ¼ ai tð Þ 1� decayð Þ

þ
if inputiðtÞ < 0 inputi tð Þ ai tð Þ � floorð Þ
if inputiðtÞ � 0 inputi tð Þ ceiling � ai tð Þð Þ

� ð1Þ

where ai(t) represents the activation of the node i at itera-
tion t. The parameters floor and ceiling stand for the min-
imum and maximum possible activation (in our model set
to �1 and +1, respectively). Inputi(t) is the activation node

Figure 1. The picture shows the structure of a
general PCS network model for probabilistic
inferences as postulated by PCS. Boxes repre-
sent nodes, for which activation a is changed
in the process of PCS. Lines represent links
between nodes which can have different
strength w and can be excitatory and inhibitory.

1 Note that PCS networks take the network structure as given and simulate only the ad hoc interpretation given this evidence structure (Shultz
& Lepper, 1996). Changes in the structure of the network (i.e., in the link weights) that might be caused by long-term learning are not part
of model (cf. supervised or unsupervised learning models).
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i receives at iteration t, which is computed by summing up
all products of activations and connection weights wij for
node i (Equation 2). Decay is a constant decay parameter.

inputiðtÞ ¼
X
j¼1!n

wij ajðtÞ: ð2Þ

According to previous simulations we expected choices
to approximate a weighted compensatory cue-integration,
decision times should decrease and confidence should
increase with increasing superiority of one option over the
other (e.g., Glöckner, 2010; Glöckner & Herbold, in press).
Finally, the posterior cue validity (i.e., activation of cue
nodes in the resulting mental representation) should not
be stable but should be indirectly influenced by other cues
indicating information distortions (cf. DeKay, Patino-
Echeverri, & Fischbeck, 2009; Russo, Carlson, Meloy,
& Yong, 2008; Simon, Snow, & Read, 2004).

Method

In the simulation, the differences between initial cue validi-
ties were systematically manipulated. Separate simulations
were run for the six cue patterns depicted in Table 1 (top).
The cue patterns represent all possible cue patterns in deci-
sion tasks with two options and three cues in which each op-
tion has at least one positive cue and no cue has positive
values for both options.

In the simulation we used parameters roughly oriented
on the ones used by McClelland and Rumelhart (1981).

We used parameters that were very similar to the ones used
in our other publications (Glöckner, 2006, 2009, 2010;
Glöckner, Betsch, & Schindler, in press; Glöckner & Bröder,
in press) which are presented in Table 2. Differences are due
to general developments of the PCS model (and specifically
the fact that the here reported work was conducted some
years before most of the other studies mentioned above).
They are not due to post hoc data fitting.2 One important
conceptual difference is that in this paper we do not run sim-
ulations for each individual but generated an overall PCS
prediction for all participants (see Table 1). This average
modeling approach has the major advantage that it puts
PCS and the other strategies on equal footing and avoids
the issue of overfitting. Specifically, we manipulated cue
validities in a certain parameter range and used the average
prediction in this range as the PCS prediction for all partic-
ipants. This means that PCS predictions ignore difference in
individuals’ cue validities (e.g., whether a person relies
twice as much on one cue than on another) but takes into
account participants’ cue hierarchy (i.e., their subjective
ordering of cues according to validity). It, however, also
has the downside of neglecting individual differences which
might lead to underestimating PCS use. We nevertheless
decided to use this simplified method for pragmatic reasons.

In the PCS simulations, according to Figure 1, cue infor-
mation (links between cues and options, e.g., wc1-o1) was
represented by link weights of +0.01 and �0.01. The inhi-
bition between the options was represented by a strongly
negative link wo1-o2 = �0.10 and the decay parameter was
set to 0.10.3 The stability criterion used for terminating the

Table 1. Cue patterns used in the simulation and in Experiments 1–3

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6

A B A B A B A B A B A B

Cue 1 + � + � � � + � + � + �
Cue 2 � + � � + � � + � + + �
Cue 3 � � � + � + � + + � � +

Decision time predictions PCS
Cycles 212.1 (4.9) 166.5 (2.1) 215.0 (0.6) 286.2 (15.2) 186.3 (2.9) 135.0 (1.1)
Estimate 0.5 �1.5 0.5 3.5 �0.5 �2.5

Confidence predictions PCS
ao1-ao2 0.251 (.007) 0.361 (.004) 0.274 (.0003) 0.141 (.021) 0.324 (.005) 0.472 (.003)

Note. A and B represents the two options. Cue 1 is the most valid cue, cue 2 is the second most valid cue, and cue 3 is the least valid
cue. Decision time and confidence predictions for the cue patterns are shown in the lower part of the table. Cycles mean iterations in the
PCS simulation. They were averaged over 525 simulations per cue pattern (i.e., 21 · 5 · 5). The SD for 21 average values for each
level of initial validity of cue 1 is given in parentheses. Estimate is a rough transformation of cycles to a scale of contrast weights that
add up to zero.

2 In Glöckner (2006) we used exactly the same parameters. In the other simulations that were run later we mainly used a slightly lower decay
(.05) and a somewhat stronger inhibitory connection (�.20). In several (unpublished) robustness checks of PCS we found that such slight
changes in decay and in the inhibitory connection do not change PCS predictions qualitatively (see also Footnote 3, below).

3 For simplicity, inhibitory links between options were assumed to be equal in all comparisons. Alternatively, one might assume that the
strength of inhibitory links decreases with increasing similarity between options. Previous simulations have shown that changes in
inhibitory strength mainly influence the size of information distortions (see Table 2) but do not change the pattern of results qualitatively.
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process was 10 cycles with no energy changes4 bigger than
10�6. In the simulation, the validity weight of cue 1 wv1 was
manipulated from 0.40 to 0.60.5 With this manipulation, the
advantage of cue 1 over the other cues was systematically
increased. For each level of cue 1, wv3 was varied from
0.01 to 0.05 and wv2 was varied from 0.10 to 0.14 in order
to add some variation on each level of wv1 and to reduce the
impact of a number-specific outlier in decision time predic-
tions. All analyses are based on the average of the resulting

25 crossed constellations for each level of wv1. Overall, we
simulated a total of 525 cue validity constellations per cue
pattern.

Results and Interpretation

Choices

Choice predictions were calculated by comparing the acti-
vation of the two option nodes after the network stabilized.
In cue patterns 1, 2, 3, 5, and 6, all predicted choices were
for option A.6 In cue pattern 4, predicted choice for option
A increased with increasing validity of cue 1 (Figure 2).
Thus, as we expected the model’s predictions are in line
with the predictions of weighted additive models.7 Further
simulations with different parameters showed that (when
assuming similar cue hierarchies) the general patterns for
all dependent variables are relatively robust (see also
Glöckner, 2009).

Decision Time

Decision time predictions were calculated from the number
of iterations (cycles) that were necessary to construct

Table 2. Parameters used in the PCS simulation

Value Comment

Decay 0.10 Decay parameter for node activation; influences the overall activation level
of the nodes, the higher the value the lower the final activation level.

wo1-o2 �0.10 Inhibitory connection between options; influences the size of coherence
shifts; the stronger the inhibitory connection the stronger the coherence
shifts.

wc-o 0.01/�0.01 Connection between cues and options representing positive or negative
predictions.

wv wv1 = 0.40 to 0.60 Links between general validity node and cues representing a priori cue
validity. Cue validities range from 0 to 1 and were manipulated.wv2 = 0.10 to 0.14

wv3 = 0.01 to 0.05
Ceiling/floor 1/�1 Upper and lower limit for activations of nodes.
Stability criterion 10�6 The network was considered having reached a stable solution if there was

no energy change in the network for 10 iterations which exceeded 10�6.
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Figure 2. Choice predictions for cue pattern 4.

4 The overall Energy at time-step (iteration) t is calculated by multiplying all pairwise activations ai and aj and connection weights wij of
both:

Energy tð Þ ¼ �
X
i

X
j

wijaiaj:

Energy changes are determined by comparing Energy over time-steps.
5 Note that link weights (which represent initial validity parameters in the model) are not numerically identical with cue validities, defined as

conditional probabilities. A link weight of zero represents the fact that a cue has no predictive power and is equivalent to a cue validity of .50.
6 In the simulation of PCS, for simplicity, no error model was incorporated. Hence, PCS predicts choice probabilities of 1 plus an unspecified

flexible component which is due to variations in the transformation of values into weights.
7 The question of how different cue validities should be transformed into cue weights in PCS network models and WADD is discussed

elsewhere (Glöckner, 2010).
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a stable solution of the network. The average numbers of
iterations for cue patterns are shown in Table 1 (middle).
The PCS model predicts high decision times for cue pattern
4, medium decision times for cue patterns 1, 2, 3, and 5, and
low decision times for cue pattern 6. The effect of the cue
validity manipulation is presented in Figure 3 (left).

Confidence

Confidence predictions were derived from the absolute dif-
ference of the final activation of the options (Glöckner,
2010). Hence, predictions were calculated as relative activa-
tion advantage of one option over the other (Table 1, bot-
tom). Confidence predictions correlated with r = �.98
with decision time predictions.

Cue Validity

As mentioned above, one of the core properties of PCS net-
works is that the validity of the cues is changed within the
decision process (coherence shifts, Holyoak & Simon,
1999). In PCS networks, the resulting posterior cue validity
is conceptualized as activation of nodes (whereas prior cue
validities are represented by links). The final activations of
the node representing cue 2 were analyzed. The manipula-
tions of the cue pattern and the cue validity of cue 1 both
influenced the final activation of cue 2 which is exemplarily
shown for cue pattern 4 (Figure 3, right).

Discussion

Overall, the results converge with the predictions derived
from theoretical considerations and earlier simulations of
PCS networks (Glöckner, 2001, 2006, 2010; Holyoak &
Simon, 1999). First, and most important, by applying PCS
mechanisms, individuals should arrive at choices that take
into account all pieces of information according to their a
priori cue validity (approximating a kind of WADD strat-
egy), and they should arrive at these choices rather quickly.
Second, decision time should increase and confidence

should decrease as inconsistency in the decision situation
increases. In other words, if the cues that speak for one
option are almost as strong as cues that speak for the other,
then decision times should be longer, whereas decision
times should be faster if all cues speak for one option and
no dominance structuring is necessary (and vice versa for
confidence). Finally, the PCS model predicts that subjective
cue validities change during the decision process to form a
consistent representation (and result in different posterior
cue validities). The last prediction has been extensively
tested and is supported by ample evidence (e.g., DeKay
et al., 2009; Holyoak & Simon, 1999; Russo et al., 2008).
The first three predictions will be tested in the following
experiments using inferences from memory and different
time-pressure conditions.

Methodological Preliminaries

To allow for strategy classification, predictions concerning
choices and decision times for each cue pattern were derived
and are summarized in Table 3. For TTB, EQW, and
WADD, decision times were derived from the number of
computational steps necessary to come to the decision (for
details, see Glöckner, 2010) as it has been common practice
in many previous studies (e.g., Bröder & Gaissmaier, 2007;
Lohse & Johnson, 1996). Note that for pattern 4, choice pre-
dictions of WADD and PCS depend on individuals’ cue
validities. If the most valid cue is considered to be far more
valid than the remaining ones, Awould be chosen, otherwise
B. In the maximum-likelihood strategy classification re-
ported below we started with the distinct prediction that B
should be chosen in pattern 4 and A in the remaining pat-
terns. As mentioned above, for the decision time predictions
and confidence predictions of PCS we use the average pre-
diction derived from the simulation, to avoid giving PCS the
advantage of free parameters. Average predictions were cal-
culated by averaging predictions for each cue pattern over
all cue validity variations for cue 1 used in the above
reported simulation.

It should be noted that in the current paper we assume
the classic implementation of WADD calculations following
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Figure 3. Decision time pre-
dictions for cue patterns 1–6
(left) and coherence shift pre-
dictions for cue 2 (right) for cue
pattern 4. Decision time is
estimated by the number of
iterations to find a stable solu-
tion in the network. Coherence
shifts are estimated by the final
activation of cue 2.
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Payne et al. (1988). Other processes which approximate
weighted compensatory strategies and lead to decision time
predictions similar to those of PCS are decision field theory
(DFT) (Busemeyer & Johnson, 2004; Busemeyer & Town-
send, 1993), multiattribute decision field theory (MDFT) (cf.
Diederich, 2003), as well as the paramorphic generalized ra-
tional model (gRAT) by Bergert and Nosofsky (2007). In
line with PCS the latter models essentially assume that deci-
sion time increases with increasing evidence-difference be-
tween the options which has been supported by previous
empirical data (e.g., Bergert & Nosofsky, 2007; Birnbaum
& Jou, 1990; Diederich, 2003; Glöckner, 2001; Hilbig &
Pohl, 2009). It would be beyond the scope of this paper
to test PCS against these models. Decision time findings
in line with PCS would therefore also support DFT, MDFT,
and gRAT. PCS (as well as DFT and MDFT) can be under-
stood as process implementations of gRAT.

Three experiments were conducted to explore decision
strategies in memory-based probabilistic inferences and to
test the predictions of the PCS model. In Experiment 1,
implicit time pressure was induced by instructing partici-
pants to respond as quickly as possible, whereas in Experi-
ments 2 and 3, explicit time limits were applied using a
visible timer that counted down participants’ remaining
available response time. Based on findings for memory-
based decisions (Bröder & Gaissmaier, 2007; Bröder &
Schiffer, 2003b), in Experiment 1, TTB would be expected
to be the dominating decision strategy. In contrast, findings
of Glöckner and Betsch (2008c) indicate that fast weighted
compensatory strategies that are partially based on auto-
matic, intuitive processes (i.e., PCS or other automatic mod-
els that implement weighted compensatory information
integration) could dominate. Thus, in the first experiment
we tested the hypothesis that even under time pressure, fast

weighted compensatory strategies are predominantly applied
in memory-based decisions with cues that have natural
validity. We furthermore expected to find a substantial pro-
portion of PCS users who show choices, decision times, and
confidence to be in line with the predictions of the model.

Experiment 1

Method

Participants and Design

Participants of the first experiment were 20 University of
Oregon undergraduate students (15 female) between the
ages of 18 and 24. The experiment lasted about 45 min
and the participants partially fulfilled a course requirement
in exchange for their participation. Decision tasks were
manipulated within subjects using a 6 (Cue pattern) · 4
(Version) design, with ‘‘version’’ representing different spe-
cific city comparisons (i.e., only the city label was changed)
that realized the above introduced cue patterns (Table 1).

Materials and Procedure

Participants had to decide which of two cities had more
inhabitants based on probability cues. Information was pro-
vided as to whether a city was a state capital, whether it had
a university, and whether it had a major league sports team.
In order to make the decisions memory-based, participants
learned information about 12 unfamiliar German cities8 in
a preliminary learning phase and then later had to decide

Table 3. Predictions of TTB, EQW, WADD, and PCS for choices and decision times

Predictions for choices

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6

TTB A A A A A A
EQW A:B A:B A:B B A A
WADD A A A A/B A A
PCS A A A A/B A A

Predictions for decision times (contrast weights)
TTB �1 �1 5 �1 �1 �1
EQW 0 0 0 0 0 0
WADD 0 0 0 0 0 0
PCS 0.5 �1.5 0.5 3.5 �0.5 �2.5

Note. Patterns 1–6 refer to the respective cue patterns in Table 1. In the upper part of the table, predictions for choices are shown. A and
B stand for the predicted option. ‘‘A:B’’ indicates no predicted difference between the selection of A or B. ‘‘A/B’’ represents the choice
of A or B depends on high or low differences between cue validities of the most and the less valid cues. The lower part of the table
shows predictions of decision times expressed in contrast weights. Differences in values should only be compared within a decision
strategy (within one line of the table) because they represent relative weights comparing different cue patterns for one strategy.

8 The cities used in the experiment were Wiesbaden, Mannheim, Rostock, Dortmund, Schwerin, Hannover, Potsdam, Kassel, Leverkusen,
Freiburg, Magdeburg, and Dresden. Three of 36 cue values were altered from the real values to fit our design.
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which of the two cities was larger when the information was
no longer present. The decision tasks always consisted of
two options (i.e., cities) and three cues (i.e., information
about the presence of state capital, university, and major lea-
gue sports team). Each of the six cue patterns presented in
Table 1 was realized by four different combinations of cities
resulting in a total of 24 decision tasks. The experiment was
completely computer-directed.

Participants were informed that they would learn infor-
mation about real existing German cities and afterward they
would be asked to recall the information. They were further
informed that the three students with the best performance
on this task would additionally earn $20, $10, and $5.
The learning phase of the study consisted of repeated learn-
ing trials in four parts. It started with 10-s presentations of
each of the cities with all three cue values at once. Then in
the second part, single cue values were presented for 6 s in
random order (e.g., ‘‘Kassel – has a university’’). In the
third part of the learning phase, participants had to answer
questions about single cue values in random order (e.g.,
‘‘Does Kassel have a university?’’) and were provided with
feedback. In the fourth part of the learning phase, for each
city, participants were asked to recall all three cue values at
once. Again, direct feedback was provided on the correct-
ness of the answers. This whole learning procedure was
repeated three times. In the third repetition, presentation
of single cue values (part 2) was omitted to decrease the
overall duration of the study. The resulting learning phase
lasted about 25 min. Hence, we used a fixed number of
learning trials in contrast to a fixed learning criterion.

In the subsequent decision phase, participants were
asked to decide which of two cities had more inhabitants
and were told that correct choices would be rewarded with
bonus points that would increase their likelihood of win-
ning the money for best performance. Students were
instructed to make accurate decisions and to respond as
quickly as possible. No information on the validity of the
cues was provided and participants had to construct subjec-
tive cue validities from existing knowledge. The 24 deci-
sion tasks were presented in random order. Two
additional decision tasks were used for warm-up purposes.
Only the names of the two cities were presented, and par-
ticipants had to select one of them with a mouse click.
After each decision task participants were asked to indicate

how confident they were that their choice was correct on a
scale from �100 (very unconfident) to +100 (very confi-
dent) using a horizontal scrollbar. Choices, decision times,
and confidence judgments were recorded as dependent
variables.

Participants were asked in a posttest to recall cue values
for all cities. Prior knowledge about the German cities was
also measured at this time by asking participants to choose
one of three options: (a) I have never heard of this city
before, (b) only the name of the city was familiar to me,
or (c) I knew more than just the name of the city before
the study. Cue validities were explicitly measured by indi-
cating how important the cues were for their decision on a
scale from �100 (very unimportant) to +100 (very impor-
tant) using a horizontal scrollbar. Note, that, in the terminol-
ogy of the classic lens model (Brunswik, 1955), we thereby
measure cue validity not as judgment of the objective rela-
tion between distal criterion an cues (i.e., left side of the
lens) but as participants’ estimation of their personal weight-
ing of these cues (i.e., right side of the lens).

Results

Learning Phase and Prior Knowledge

Inspection of the results of the posttest revealed that on
average 89% of the cue values were recalled correctly.
Thus, it can be concluded that the learning phase was suc-
cessful. There were no considerable differences in recall
performance between cities (all p > 81%). Participants
had almost no prior knowledge about the German cities.
Overall, 23% of the ratings indicated that a city name
was known; only 2% indicated that more than the name
was known.

Strategy Classification

Strategy classification was done in two steps, the first ana-
lyzing choices, the second analyzing decision time. Table 4
reports the final results after both steps. Individuals’ decision
strategies were first analyzed using a maximum-likelihood

Table 4. Results of strategy classification

Decision strategies

TTB EQW PCS WADD RAND

Experiment 1 (instruction) 2 (10%) 7 (35%) 8 (40%) 3 (15%) 0 (0%)
Experiment 2 (time limit 3 s) 9 (33%) 5 (19%) 8 (30%) 4 (15%) 1 (4%)

Experiment 3
Condition 1 (time limit 12 s) 5 (25%) 6 (30%) 4 (20%) 4 (20%) 1 (5%)
Condition 2 (time limit 6 s) 4 (20%) 8 (40%) 5 (25%) 2 (10%) 1 (5%)
Condition 3 (time limit 3 s) 4 (20%) 3 (15%) 7 (35%) 5 (25%) 1 (5%)

Note. Due to rounding, the sum of percentages in a row may slightly differ from 100.
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method (Bröder & Schiffer, 2003a).9 Specifically, we com-
puted the likelihood of each choice vector given each deci-
sion strategy and a constant error rate. To conduct the
analysis for the strategies TTB and WADD/PCS, the (ordi-
nal) position of the cues was calculated from individuals’
explicit cue validity ratings.10 To test the robustness of this
procedure we conducted Monte-Carlo simulations, varying
error parameters for explicit cue validities, and strategy
application. The simulations revealed that the classification
method is robust but shows a slight tendency to overestimate
TTB usage.11 We nevertheless used the method because the
bias works against our hypothesis.

The maximum-likelihood analysis revealed choices in
line with TTB for two participants, with WADD/PCS
(assuming choices for B in pattern 4) for six participants,
and with EQW for nine participants. For three participants,
their choices suggested an equal likelihood of using TTB
and WADD/PCS. Note, however, that TTB and EQW
choices can always be produced by applying the more com-
plex strategies of WADD/PCS with specific weights (i.e.,
non-compensatory weights or equal weights; see Lee &
Cummins, 2004). We used decision times to further investi-
gate which strategy was actually used by participants who
showed choices in line with TTB and EQW for which
WADD/PCS could also account (Bergert & Nosofsky,
2007; Glöckner, 2010). For each individual, we correlated
average decision times for the six cue patterns with the pre-
dictions of the models (i.e., TTB and PCS) and tested these
correlations for significance (cf. Glöckner, 2010).

To account for deviations from normal distribution and
to reduce the influence of outliers, decision times were
log-transformed. The log-mean of decision times was 5.2
seconds (skew = 0.41 and kurt = �0.16). Furthermore,
decision times were re-sorted according to individuals’ cue
hierarchies measured in the posttest, so that, for instance,

in cue pattern 1, the best cue always spoke against the sec-
ond best cue (irrespective of whether the best cue for a par-
ticular individual was state capital or university).
Individuals’ mean decision times for the six cue patterns
were correlated with the time predictions of TTB and PCS
(Table 3). We tested the correlations against the null hypoth-
eses that individuals used EQW and WADD (H0(a): q = 0)
or TTB (H0(b): qTTB = qPCS). The alternative hypothesis in
both cases was that PCS was used. For the tests we used
an increased alpha level of a = .20 which allowed us to de-
tect medium to large effects (q = .4) with a power of .57 for
n = 6 observations using a one-tailed test (Faul & Erdfelder,
1992). Participants who showed choices in line with EQW
or WADD and for which H0(a) could be rejected were clas-
sified as PCS users; participants who showed choices in line
with TTB and for which H0(b) could be rejected were clas-
sified as PCS users. In the rare cases in which the likelihood
of the observed choice vector was equal for TTB and
WADD (and PCS), participants were classified according
to the highest absolute decision time correlation.

In line with our hypothesis, the majority of participants
used weighted compensatory strategies (Table 4, first row).
Eight participants (40%) seemed to use PCS and three par-
ticipants (15%) used WADD. Seven participants (35%) used
an EQW heuristic. In contrast to earlier findings (Bröder &
Gaissmaier, 2007) only two participants used the non-com-
pensatory TTB strategy.12 A sensitivity analysis shows that
the core results concerning mainly compensatory strategy
use also hold if the alpha level in the decision time test is
reduced to a = .05, although then the number of TTB users
increases from 2 to 4.

Decision times of the different strategy users were in line
with the predictions derived for the strategies (Figure 4).
There was an almost perfect correlation, r = .97
(p < .001), between the average decision time of PCS users

9 According to the maximum-likelihood method the likelihood Lk of an observed choice vector given the application of a decision strategy k
and a constant error rate ek is calculated by:

Lk ¼ pðnjk
��k; ekÞ ¼YJ

j¼1

nj

njk

� �
ð1� ekÞnjk ek nj�njkð Þ:

The six cue patterns are used as categories J (J = 6). The number of decisions in each category is denoted nj. In Experiment 1 all nj = 4, in
the other experiments all nj = 8. The number of observed choices in line with the prediction of the decision strategy k is indicated by njk.
The error rate ek for strategy k is estimated by:

êk ¼
XJ
j¼1

nj � njk
� �" #

�
XJ
j¼1

nj

" #
:

For WADD and PCS in cue pattern 4, option B was used as prediction. For EQW in cue patterns 1–3, random choice between A and B was
implemented by using an error rate of .5. For individuals’ error rates above .5 no likelihoods were computed. We also included a random
choice strategy in the analysis to avoid chance-based misclassifications.

10 People showed clear cue hierarchies in their explicit cue validity ratings which are also reflected in clear preferences for cities with the
more valid positive cue as compared to cities with the less valid cue in cue patterns 1–3.

11 For instance for an error rate of 30% for strategy application and cue hierarchy detection, the strategy classification was biased in favor of
TTB by approximately 12%, disfavoring WADD/PCS, and EQW by 7% and 5%, respectively.

12 It has been argued that TTB might also be applied in combination with the recognition heuristic (Gigerenzer & Goldstein, 1996). Thus, an
individual might first use the cue ‘‘Do I know the city?’’ and then apply TTB with the remaining cues (e.g., state capital). Thus, we reran
the analysis adding the recognition cue to TTB only. The predictions of the other strategies were left unchanged. The classification results
remained stable except that one former EQW user was then classified as a TTB user.
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and the predicted decision times. For the TTB user, this cor-
relation was also very high, r = .91 (p < .001). This pro-
vides converging evidence for the strategy classification.
Keep in mind, however, that for PCS users, the correlation
was also used in the classification procedure, which might
inflate the correspondence between these two measures in
this condition.

Confidence Judgments

The mean observed confidence judgments for cue patterns 1
to 6 (with the SE in parentheses) were 38.7 (6.9), 36.9 (7.0),
31.6 (6.5), 34.1 (7.0), 46.5 (7.3), and 44.5 (6.1). The confi-
dence judgments generally show the inverse patterns of
decision times. Mean confidence judgments for PCS users
correlated almost perfectly with PCS confidence predictions
presented in Table 1 (r = .90, p < .001). In line with our
expectations, for PCS users confidence increases with
decreasing inconsistency.

Discussion

In the first experiment, we investigated strategies in mem-
ory-based decisions. The results show that the majority of
participants used weighted compensatory strategies (PCS
and WADD) rather quickly and only a minority used
TTB. These results conflict with Bröder and colleagues’
(Bröder & Gaissmaier, 2007; Bröder & Schiffer, 2003b)
conclusion that TTB dominates in memory-based probabi-
listic inferences. Their findings apparently do not generalize
to situations in which familiar cues with natural cue validi-
ties and binary values are used.

Our data also challenge the assumption that people either
have to ignore cue values or cue validities because of limited
cognitive capacity. The results indicate that people are able
to use both sources of information in at least reasonably
complex decision situations – even in memory-based
decisions in a weighted compensatory way. Because of
low individual decision times, it is unlikely that information
was integrated using solely deliberate computations. Further
support for this idea also comes from the fact that decision
times for PCS and WADD users were only slightly higher

than decision times for TTB and EQW users. In line with
our second hypothesis, the intuitive PCS model accounted
well for the behavior (choices and decision times) of a sub-
stantial proportion of the participants. On an aggregated
level, decision times and confidence judgments provide con-
verging evidence for the PCS model although decision time
results can also be explained by other models (see above).

Decision time data also rule out the alternative explana-
tion that individuals were already constructing knowledge
about city sizes in the learning phase. Had this been the case,
no systematic differences in decision times among cue pat-
terns should be observed. The highly systematic variations
of decision times in line with the PCS predictions make it
also very unlikely that participants classified as PCS users
relied on exemplars (Juslin & Persson, 2002). Furthermore,
the highly systematic differences in confidence ratings in
line with the predictions of PCS cannot easily be explained
by classic evidence accumulation models such as DFT and
MDFT.

Two methodological differences to Bröder and Schiffer
(2003b) should be noted which might partially account for
our somewhat different findings: We used pairwise compar-
isons of options based on three instead of four cues and a
learning phase with a fixed number of trials instead of a
fixed performance that had to be reached. We cannot rule
out that the lower complexity (cf. Sundstroem, 1989) and
participants (assumed) higher homogeneity in motivation
in the test phase might have additionally reduced TTB
usage.

In a second experiment, we tested whether the results of
Experiment 1 would also be found under severe explicit
time limits of 3 s, which is well below the minimum average
decision times observed in Experiment 1 (see Figure 4).
According to findings for outcome-based decisions (Payne
et al., 1988), extreme time limits lead to increased use of
simplifying non-compensatory strategies. Thus, we might
expect to see greater use of TTB. However, because PCS
is based on automatic processes, it could also be expected
that PCS would still be the predominantly used strategy,
as was found for decisions made from readily available
information (Glöckner & Betsch, 2008c). Thus, from a the-
oretical as well as from an empirical perspective, no clear
predictions favoring either TTB or PCS could be derived.
We decided to start with the preliminary assumption that
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time limits would lead to a similar distribution of decision
strategies as in Experiment 1.

Experiment 2

Method

Participants and Design

Twenty-seven undergraduate students of the University of
Oregon (16 female) between the ages of 18 and 25 years
took part in the experiment. They were recruited and
rewarded using the same procedure as in Experiment 1.
Decision tasks were manipulated within subjects using a 6
(Cue pattern) · 4 (Version) · 2 (Order of options) design.
The ‘‘order of options’’ factor was added such that all city
comparisons in Experiment 1 were presented twice with
the order of cities being reversed to increase power in the
analysis.

Materials and Procedure

Essentially the same materials and procedure as in Experi-
ment 1 were used. The only major change in the decision
phase was that a dynamic down-counting time bar was added
to the computer screen to provide an explicit time limit of 3 s.
The length of the bar decreased proportionally to the elapsed
decision time and changed color from green to red after 2.5 s.
If a participant did not make a decision in time, a choice was
no longer possible and the participant was instructed to
decide faster the next time. Participants were instructed to
make accurate decisions within the time limits. No confi-
dence judgments were collected in this study.

Results

Learning Success and Manipulation Check

The posttest showed that 84% of the answers in the posttest
for knowledge about the cities were correct. Thus, the learn-
ing procedure was again successful and there were no sub-
stantial differences in recall performance between cities.
Again there was almost no prior knowledge concerning
the cities (4%), and only 24% of the city names were known
to participants. Inspection of decision times revealed that
98.5% of the choices were made in time, thus the individu-
als followed the instructions to answer within the time limit.
The log-mean of decision time was 1.7 s (skew = �0.03
and kurt = �0.6). Thus, the explicit time limit forced people
to decide on average 3.5 s faster than under the implicit time
pressure present in Experiment 1.

Strategy Classification

Choices and log-transformed decision times were analyzed
using the same method as in the previous experiment.

We used the same stepwise procedure in which choices were
analyzed first and decision times were analyzed afterward.
In the maximum-likelihood method 10 participants showed
choices in line with TTB, five in line with WADD/PCS, and
eight in line with EQW. One person showed random
choices. For three participants likelihoods for TTB and
WADD/PCS were equal.

The overall results of the strategy classification are
shown in Table 4 (second row). Nine participants used
TTB. Eight participants still appeared to be using PCS. Five
participants used EQW; four participants used WADD. In
sum, although the proportion of TTB users was higher as
in Experiment 1, compensatory strategies still predominated
under severe time pressure and decision times of only 1.7 s.

To investigate the influence of the explicit time pressure
on strategy classification, we compared the results of Exper-
iments 1 and 2. The chi-square test of independence
between strategy classification (TTB, EQW, PCS, and
WADD) and experiment (i.e., either Experiment 1 or Exper-
iment 2) was not significant, v2 (N = 46, df = 3) = 4.22,
p = .24, although the manipulation of time pressure did
have a sizable influence on decision times. Thus, it was
not possible to reject the initial hypothesis that decision
strategy selection remains stable under severe time limits.
Note, however, that the power of the analysis was rather
low.

Aggregated decision times were analyzed for the differ-
ent strategy users (Figure 5). Mean decision times for PCS
users were again in line with the predictions of the model,
r = .71, p < .05. The same was true for TTB users,
r = .94, p < .001.

Discussion

Strategy selection under severe explicit time limits did not
differ significantly from strategy selection under implicit
time pressure (i.e., ‘‘respond as quickly as possible’’).
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The results of Experiment 2 indicate a trend for TTB to be
used more often under severe time limits, a finding that is in
line with the predictions and previous findings of Payne
et al. (1988). However, even under severe time limits, and
in an average decision time of 1.7 s, almost two-thirds of
the participants made decisions reflecting use of compensa-
tory strategies (PCS, WADD, and EQW). These partici-
pants’ patterns of response suggested that they were
activating all pieces of information from memory and inte-
grating them. The decision times make it very unlikely that
individuals could have applied deliberate sequential pro-
cesses to carry out these calculations and to make the deci-
sions, suggesting instead that intuitive decision strategies
that rely on automatic processes might have been used. Fur-
thermore, decision times of the participants classified as PCS
users were once again highly correlated with the decision
time predictions derived from the simulations. Taken to-
gether, the findings lend support to the PCS model and other
models that assume fast complex compensatory information
integration (e.g., DFT and MDFT).

We aimed to investigate the effects of time limit more
closely. Thus, we ran a third experiment using a between-
subjects design manipulating the level of time pressure.
We once again used the severe time limit condition which
replicated Experiment 2, and included two additional condi-
tions as comparisons: one in which decision time was also
highly limited but somewhat less stringently than in Exper-
iment 2 and, in fact, close to the actual mean amount of time
that subjects took in Study 1, and another in which subjects
had an explicit time limit, but one that gave them almost
double the amount of time the average participant took in
Study 1 under implicit time limits.

Experiment 3

Method

Participants and Design

Sixty undergraduate students at the University of Oregon,
who were recruited and rewarded as in Experiments 1 and
2, took part in the experiment. Participants were randomly
assigned to one of the three conditions: a lenient (12 s),
medium (6 s), or severe (3 s) time limit. Again, decision
tasks were manipulated within subjects using a 6 (Cue pat-
tern) · 4 (Version) · 2 (Order of options) design.

Materials and Procedure

Materials and procedure were essentially the same as in
Experiment 2. The speed of the down-counting time bar
was varied for the between-subjects time limit manipulation.

Results

The learning phase was again successful (87% correct
answers). Prior knowledge about the cities was very similar
to that in Experiments 1 and 2 (5% prior knowledge, 24%
names known, and 71% unknown). Again, the individuals’
choice vectors and decision times were analyzed for strategy
classification, using the same method as in the previous
experiments. The results are presented in Table 4 (third,
fourth, and fifth row). Once again, we found a high propor-
tion of users of compensatory strategies under severe time
limits, replicating Experiment 2. Yet in each of the three
time limit conditions, compensatory strategies prevailed.
There was no significant change in decision strategies
(i.e., TTB, EQW, WADD, and PCS) with increasing time
pressure, v2(N = 60, df = 6) = 4.54, p = .60.

There was a substantial proportion of PCS users (overall
27%) which was similar to that observed in Experiment 2
(26%), but at a rate less than that observed when only impli-
cit time pressure was present (Experiment 1: 40%). This
might be partially due to the fact that explicit time limits blur
the effects on decision times. Thus, the proportion of PCS
users is likely to be underestimated in the lenient and med-
ium time limit conditions and there is a high likelihood that
PCS users might not be detected (and instead erroneously
classified as WADD users). Note that even in the low
time-pressure condition, observed decision times of 2.6 s
made it very unlikely that a WADD strategy was deliber-
ately applied (cf. Lohse & Johnson, 1996).

Inspection of mean decision times revealed that all three
time limit conditions led to generally low decision times.
The log-means of decision times for the three conditions were
1.70 s, 2.39 s, and 2.61 s.13 More than 99% of the choices
were completed in time. Mean decision times of the strategy
users were again correlated with the predictions of the
respective strategies. The correlations of PCS and TTB users
for the time limit conditions were respectively, rPCS =
.74/rTTB = .88 (lenient), rPCS = .50/rTTB = .67 (medium),
and rPCS = .91/rTTB = .35 (severe). Decision time results
are presented in Figure 6.

Discussion

The results replicate and extend the findings of the previous
experiments. In all three time limit conditions, compensatory
strategies predominated. A considerable proportion of par-
ticipants showed decisions and decision times in line with
the predictions of PCS. Consistent with the theoretical con-
sideration about properties of intuitive processes (Hammond
et al., 1987) and in line with recent findings in decisions
from given information (Glöckner & Betsch, 2008c) the
time limit manipulation did not have a significant effect
on decision strategies. Many individuals seem to use
intuitive decision strategies that allow for weighted compen-
satory information integration from the beginning

13 Due to a programming error, six decision times for the first and six other decision times for the second occurrence of each version of each
decision task were not recorded, resulting in 36 instead of 48 recorded decision times.
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(cf. WADD as default strategy, Bröder, 2003). Participants
seem to be able to use these strategies even under severe
time limits; but they also apply them under lenient time lim-
its in order to decide quickly. In the latter case the available
time is only partially used.

General Discussion

In this paper we investigated decision strategies in memory-
based decisions using the city-size task. Specifically, we
tested whether compensatory strategies such as the PCS
model or the non-compensatory TTB heuristic could better
account for memory-based decision behavior under different
time-pressure conditions. We first derived choice, decision
time, and confidence predictions by conducting simulations
for PCS. We ran three experiments to test these predictions
at an aggregated level and to test strategy usage at an indi-
vidual level. In line with earlier findings, we observed high
interindividual heterogeneity in strategy usage. Under all
conditions, we found a substantial proportion of TTB users
(overall 22%) who showed choices and decision times very
much in line with the predictions of the strategy. However,
in contrast to earlier findings, the majority of individuals
appeared to apply compensatory strategies in our studies.
Overall, 30% of the participants’ decision times and choices
were best explained by the PCS model. An additional 17%
showed WADD choices with response times that make it
very unlikely that weighted sums were deliberately calcu-
lated. Finally, 27% of the participants appeared to use an
EQW strategy.

It was found that time pressure had no significant effect
on strategy choice, although, when comparing the results of
Experiment 1 with the remaining experiments, there was a
trend toward increased use of simple non-compensatory
strategies such as TTB when explicit time limits were
applied. However, even with severe time limits and decision
times as low as 1.7 s, the majority of participants used com-
pensatory strategies. It is very unlikely that in such a short
time the necessary pieces of information are deliberately
retrieved from memory and serially integrated. This indi-
cates that intuitive strategies might have been used which

are not bound by cognitive capacity constraints. It is, how-
ever, up to further research to investigate whether the results
generalize to memory-based decision in more complex envi-
ronments. It might particularly be of interest whether the
results can be replicated in environments with more than
two options for which an increased usage of non-compensa-
tory strategies has been observed in previous studies inves-
tigating inferences from givens (Payne, 1976).

In line with the predictions by Hammond et al. (1987),
and as derived from our simulation, intuitive-automatic deci-
sion strategies seem to integrate information in a weighted
compensatory way. The almost perfect correlations between
decision time and (in Experiment 1) confidence predictions
of the PCS model and the observed data indicate that the
PCS model is a good candidate to explain these processes.
Thus, the findings add to the growing body of evidence sup-
porting PCS approaches in decision making (e.g., Holyoak
& Simon, 1999).

It has been recently argued that – similar to the strategy
selection problem in multi-strategy models (Glöckner et al.,
in press) – single strategy models such as PCS could even-
tually fall prey to a problem of parameter selection
(Marewski, in press). In the worst case, different sets of
parameters would lead to opposite predictions so that the
model loses any predictive power (but see also Glöckner
& Betsch, in press). In our recent research including the cur-
rent work we therefore tried to avoid the problem by using
similar parameters in all of them. We generally found that
the applied parameters can account well for a wide variety
of behaviors in rather different tasks (Glöckner et al., in
press; Glöckner & Bröder, in press) and even for findings
that have been classically explained by adaptive strategy
selection (Glöckner & Hilbig, 2010).

Note that for pragmatic reasons in the current studies, the
PCS model was used without taking into account individual
differences in the magnitude of cue validities. Furthermore,
the power for detecting differences in decision times in strat-
egy classification was rather low and the strategy classifica-
tion favored TTB. Finally, wrong explications of cue
validities by participants are likely to have produced further
misclassifications in favor of EQW. Thus, the proportion of
PCS users is likely to be considerably underestimated in the
reported studies.
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Figure 6. Decision times (log-means) in decisions under different time-pressure conditions (Experiment 3). The decision
time predictions of the different strategies are shown in the left graph of Figure 4.
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Additional investigations should be conducted to test the
PCS model against other comprehensive decision models
such as DFT, MDFT, image theory (Beach & Mitchell,
1996), and prototype or exemplar models (Dougherty, Get-
tys, & Ogden, 1999). Our findings indicate that a model for
memory-based decision making should be able to account
for fast weighted compensatory information integration
and systematic differences in decision times. As mentioned
above, this is particularly the case for DFT and MDFT
which are both also indirectly supported by our decision
time data. Further investigations that aim to differentiate be-
tween models could focus on confidence, because in con-
trast to PCS, classic versions of DFT and MDFT cannot
account for the systematic confidence differences observed
in Experiment 1. As another starting point for further inves-
tigations comparing DFT and PCS, a recent eye-tracking
study on risky choices has shown that attention is not dis-
tributed proportional to the probability of outcomes – as
one might expect based on DFT – but that it is mostly direc-
ted to the most attractive outcome of the favored gamble as
predicted by PCS (Glöckner & Herbold, in press). It is due
to further research whether these findings generalize to
memory-based probabilistic inferences. More generally,
and as we have argued elsewhere (Glöckner & Witteman,
2010), evidence accumulation models, exemplar models,
and PCS models do not exclude each other but might de-
scribe complementary automatic-intuitive processes that
can all be applied to make quick compensatory decisions.

The application of TTB to memory-based decisions in
the city-size task has been explicitly hypothesized (Gigeren-
zer & Todd, 1999). However, our results show that the find-
ings by Bröder and colleagues (Bröder & Gaissmaier, 2007;
Bröder & Schiffer, 2003b) in favor of a dominant TTB use
in memory-based decision do not generalize to decision
tasks in which cues have natural cue validities which are
easy to access and have binary cue values. In line with
our expectations, this allowed individuals to apply intuitive
decision strategies which quickly integrate information and
seem to be less prone to time pressure induced capacity
constraints.

Intuitive strategies like PCS rely on the possibility for a
quick activation of information in memory. A comparison of
our findings with Bröder and colleagues’ results indicates
that the accessibility of information might be an important
moderating factor for strategy selection in memory-based
decisions. Frugal strategies that rely on one cue only seem
to be used more often if the retrieval of information is more
effortful because cue values and cue validities are not so
easy to access. In our studies, we did not induce cue valid-
ities by instruction or by lengthy cue validity learning
phases, but we used individuals’ own cue hierarchies which
they had learned in the real world. In such situations the
prevalence rate of TTB was surprisingly low.

Based on the reported results and other findings in deci-
sions from given information (e.g., Ayal & Hochman, 2009;
Bröder, 2000; Bröder, 2003; Glöckner & Betsch, 2008a,
2008c; Glöckner & Bröder, in press; Hilbig, 2008, in press;
Hilbig, Erdfelder, & Pohl, 2010; Hilbig & Pohl, 2008;
Hochman, Ayal, & Glöckner, in press; Newell et al.,
2003), the sometimes claimed ubiquity of simple fast and

frugal heuristics (e.g., Gigerenzer, 2004) seems to be overes-
timated. By focusing on the ‘‘simplifying approach’’ to deci-
sion making, in a parallel fashion, alternative decision
strategies which are based on complex automatic informa-
tion integration processes may have been underestimated.
The reported results speak for the importance of intuitive
strategies that integrate many pieces of information quickly
using automatic processes. As suggested many years ago
(e.g., Wertheimer, 1938), automatic processes that may have
evolved from processes of perception seem to play a partic-
ularly important role in human cognition. The PCS model
integrates such processes in a decision strategy and was sup-
ported by the data.
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Anderson for helping us to design an efficient learning pro-
cedure. We are grateful to Tilmann Betsch, Arndt Bröder,
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Glöckner, A., & Betsch, T. (2008b). Modeling option and
strategy choices with connectionist networks: Towards an

integrative model of automatic and deliberate decision
making. Judgment and Decision Making, 3, 215–228.
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Glöckner, A., Betsch, T., & Schindler, N. (in press). Coherence
shifts in probabilistic inference tasks. Journal of Behavioral
Decision Making.
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